Berechnung der ungefähren Sprunghöhe eines Astronauten auf dem Mond.

Ausgangswerte

Fallbeschleunigung auf der Erde (g_E): 9,81 m/s² Fallbeschleunigung auf dem Mond (g_M): 1,64 m/s²

Annahmen

Masse des Astronauten in Sportbekleidung (m_s) / mit Raumanzug und voller Ausrüstung (m_a) : 75 kg / 156 kg Beschleunigungsstrecke in Sportbekleidung (s_s) / mit Raumanzug und voller Ausrüstung (s_a) : 50 cm / 20 cm Sprungvermögen des Astronauten bezogen auf seinen Körperschwerpunkt (h_s) : 52 cm (Anmerkung: Die Bestmarke des Skispringers Sven Hannawald liegt bei 51,6 cm)

Der Astronaut springt auf der Erde aus dem Stand in Sportbekleidung:

Dei Astronaut springt auf der Erde aus dem Stand in Sportbekleidung.	
Erforderliche v_0 für einen 52 cm hohen Sprung (aus dem Stand) auf der Erde	$v_0 = \sqrt{h_S \cdot 2 \cdot g_E} = \sqrt{0.52m \cdot 2 \cdot 9.81 \frac{m}{s^2}} = 3.19 \frac{m}{s}$
Beschleunigung (a) auf v_0 über 50 cm. (Hockstellung bis Absprung)	$a = \frac{{v_0}^2}{2 \cdot s_s} = \frac{\left(3,19\frac{m}{s}\right)^2}{2 \cdot 0,5m} = 10,18\frac{m}{s^2}$
Kraft ($F_{b_{\!\scriptscriptstyle E}}$), um die Masse des Astronauten auf v_0 über 50 cm zu beschleunigen.	$F_{b_E} = m_S \cdot a = 75kg \cdot 10,18 \frac{m}{s^2} = 763,5N$
Kraft ($F_{g_{\scriptscriptstyle E}}$), um die Erdanziehung zu überwinden	$F_{g_E} = m_S \cdot g_E = 75kg \cdot 9.81 \frac{m}{s^2} = 735.75N$
Kraft insgesamt ($F_{\it ges}$)	$F_{ges} = F_{b_E} + F_{g_E} = 763,5N + 735,75N = 1499,25N$

Der Astronaut springt auf dem Mond aus dem Stand in Sportbekleidung (Turnhalle erforderlich):

Kraft ($F_{g_{\scriptscriptstyle M}}$), um die Mondanziehung zu überwinden	$F_{g_M} = m_S \cdot g_M = 75kg \cdot 1,64 \frac{m}{s^2} = 123N$
Verbleibende Kraft ($F_{b_{\scriptscriptstyle M}}$) für die Beschleunigung	$F_{b_M} = F_{ges} - F_{g_M} = 1499,25N - 123N = 1.376,25N$
Erreichbare Beschleunigung ($a_{\scriptscriptstyle M}$)	$a_M = \frac{F_{b_M}}{m_S} = \frac{1.376,25N}{75kg} = 16,58\frac{m}{s^2}$
v_0 beim Absprung	$v_0 = \sqrt{2 \cdot a_M \cdot s_S} = \sqrt{2 \cdot 16,58 \frac{m}{s^2} \cdot 0,50m} = 4,07 \frac{m}{s}$
Erreichbare Sprunghöhe auf dem Mond	$h_{M} = \frac{v_{0_{M}}^{2}}{2 \cdot g_{M}} = \frac{\left(4,07 \frac{m}{s}\right)^{2}}{2 \cdot 1,64 \frac{m}{s^{2}}} = 5,05m$

Der Astronaut springt auf dem Mond aus dem Stand mit Raumanzug und voller Ausrüstung:

Kraft ($F_{g_{\scriptscriptstyle M}}$) um die Mondanziehung zu überwinden	$F_{g_M} = m_A \cdot g_M = 156kg \cdot 1,64 \frac{m}{s^2} = 255,84N$
---	--

Verbleibende Kraft ($F_{b_{\rm M}}$) für die Beschleunigung	$F_{b_M} = F_{ges} - F_{g_M} = 1.499,25N - 255,84N = 1.243,41N$	
Erreichbare Beschleunigung ($a_{\scriptscriptstyle M}$)	$a_M = \frac{F_{b_M}}{m_S} = \frac{1.243,41N}{156kg} = 7,97\frac{m}{s^2}$	
v_0 beim Absprung	$v_0 = \sqrt{2 \cdot a_M \cdot s_S} = \sqrt{2 \cdot 7.97 \frac{m}{s^2} \cdot 0.2m} = 1.79 \frac{m}{s}$	
Maximal erreichbare Sprunghöhe auf dem Mond für einen Astronauten im Raumanzug	$h_M = \frac{{v_0}^2}{2 \cdot g_M} = \frac{\left(1.79 \frac{m}{s}\right)^2}{2 \cdot 1.64 \frac{m}{s^2}} = 0.98m$	
Eine Verringerung der Anziehungskraft kann bei Sprunghöhen unter 10 m unberücksichtigt bleiben! Wie hoch müsste man sich über der Oberfläche befinden, damit die Anziehungskraft sich um 1% verringert?		
x ist der Faktor der Änderung. r_0 ist der Radius des Himmelskörpers h die Höhe über der Oberfläche	$x = \left(\frac{r_0}{r_0 + h}\right)^2 \text{ nach h umgestellt } h = \frac{r_0}{\sqrt{x}} - r_0$	
In welcher Höhe ($h_{\rm E99}$) über der Erdoberfläche wird der Astronaut um 1% leichter?	$h_{E99} = \frac{6371km}{\sqrt{0.99}} - 6371km = 32.1km$	
In welcher Höhe (h_{M99}) über der Mondoberfläche wird der Astronaut um 1% leichter?	$h_{M99} = \frac{1738km}{\sqrt{0.99}} - 1738km = 8.76km$	